
Design and Analysis of Algorithms (Sheet #3)

Marius Gavrilescu

1. Remove the given edge, then run a depth first search from one of the nodes on this edge. A
cycle containing the edge exists if and only if the other node is reached by the search.

2. Very easy for undirected graphs: run a DFS coloring nodes alternatingly red and blue, if we
find an edge connecting two nodes of the same color then there exists an odd-length cycle.

The same algorithm will work on a strongly connected component, treating all edges as being
undirected. Suppose we find two nodes of the same color. Then there is an (undirected) cycle
of odd length.

Let [vn+1 = v0, v1, . . . , vn] be the cycle so that there is an edge from vi to vi+1 or from vi+1 to
vi. If all edges are from vi to vi+1, we found an odd cycle. Otherwise take an i such that there
is an edge from vi+1 to vi. Since we are working on a strongly connected component, there has
to be a path from vi to vi+1. If the length of this path is even, then we add the edge from vi+1

to vi to it and we get an odd cycle. Otherwise, we can replace the edge from vi+1 to vi with this
path in the original cycle, thus “reversing” it while preserving the parity of the cycle. Since
we can reverse any edge, the original (undirected) odd cycle can be turned into a directed odd
cycle.

To find an odd cycle in the whole graph, we can just apply the algorithm above on each of its
SCCs.

4. Do a modified breadth-first search which keeps a list of back pointers to all nodes from which
the current node can be reached in the minimum amount. Suppose pi[n, i] is the ith back
pointer for node n and pino[n] is the number of back pointers for node n. Then:

VAR mem : ARRAY NMAX OF INTEGER;

PROCEDURE nr(n : INTEGER);

VAR i : INTEGER;

BEGIN

IF mem[n] = 0 THEN

mem[n] := 1;

FOR i := 0 TO pino[n] - 1 DO

mem[n] := mem[n] * nr(pi[n,i])

END

END;

RETURN mem[n]

END

Finally nr(v) is the answer.

1

5. The given complexity suggests that we should run Dijkstra’s algorithm on the graph |V | times.
A very simple solution is to simply run Dijkstra’s algorithm from every node to create a table
d[a, b] which is the length of the shortest path from node a to node b, or |V | if there is no path.
Then:

m := 2 * V;

FOR i := 0 TO V - 2 DO

FOR j := i + 1 TO V - 1 DO

IF d[i,j] + d[j,i] < m THEN m := d[i,j] + d[j,i] END

END

END

IF m = 2 * V THEN Out.Line("Acyclic graph")

ELSE Out.Int(m, 0) END;

Out.Ln

7. (a) Say the edge we added connects nodes A and B. Since T (without e) is a spanning tree
containing A and B, there is a unique path from A to B that does not contain e. By
adding e to this path we get a unique cycle.

(b) Since the cycle is unique, if we remove one of the edges the resulting graph is acyclic.
Suppose now the new graph does not span the tree. This means that there exist two
nodes C and D between which there only exist paths that contain e (between A and B).
But in any of these paths we can replace edge e by the other path from A to B (the rest
of the cycle), which contradicts the assumption that our graph does not span the tree.

So the resulting graph is a spanning tree.

8. (a) Suppose there exist two different minimal spanning trees.

Take the smallest edge e in the symmetric difference on the trees. Add it to the other
tree. In this new graph, we know we have a cycle. If the largest edge in this cycle is e
then we have a cycle in the first tree (false). So there is an edge larger than e in this cycle,
which we can remove and get a smaller spanning tree. This contradicts our assumption
that there are two different minimal spanning trees.

(b) Multiply the edge weights of the graph by -1 then run any minimum spanning tree algo-
rithm.

2

9. (a) Lift them in increasing order of ti.

(b) Take any other order. There will be some i < j such that ti > tj and i is lifted before j.
Then by swapping them in the order every diver lifted after i up to and including j will
spend tj − ti less underwater.

(c) i. Take any safe order. If the order is d1, . . . , dn we’re done. Otherwise take the minimum
i such that di is not the ith diver and let dj be the ith diver. We have aj > ai.
We will swap di and dj. Obviously, this does not affect divers lifted before dj or after
di in the original order. Now, dj will be lifted at the same time di was lifted before
(so earlier than ai, so earlier than aj) and di is lifted earlier than before. So the only
divers we need to check are those between di and dj in our order.
Let dk be such a diver. Obviously ak > ai. Since in the original order they were lifted
before di, and di was lifted before ai we know that dk was lifted before ai − ti. Then,
in our new order dk is guaranteed to be lifted before ai (because we added di before
dk, ignoring the deletion of dj). But ai < ak, so diver dk is safe.
Therefore if we have a safe order with the first t divers being d1, . . . , dt we can find
a safe order with the first t + 1 divers being d1, . . . , dt+1. By induction we can find
an order with the first n divers being d1, . . . , dn, which is exactly the order we are
looking for.

ii. We know that if there is a safe order then lifting the divers in increasing order of ai is
safe. So we can simply check if the increasing order of ai is safe. If yes, then we have
a safe order. Otherwise, there is no safe order.

3

