Discrete Mathematics (Sheet #5)

Marius Gavrilescu

- 1. (a) Any two distinct elements of the chain must have different sizes. There are 7 possible sizes (from 0 to 6), so a chan can have at most seven elements.
 - (b) We have 7 chains with pairwise different sizes, and 7 possible sizes. Let B_i be the chain with i-1 elements.

If we fix B_i , then $B_{i+1} = B_i \cup \{a\}$, where $a \notin B_i$. So there are n-i possibilities for B_{i+1} . As there is only one possible B_0 (namely \varnothing), we have n possibilities for B_1 , n-1 possibilities for B_2 for each B_1 and so on. In total, there are n! = 6! = 720 chains.

- (c) It is the antichain made of all the elements of A with a cardinality of 3. There are $\binom{6}{3} = 20$ such elements, and any two of them will be different and have the same cardinality, so they will not be comparable.
- 2. (a) Preorder, as $\{1,2\} \leq \{0,2\}$ and $\{0,2\} \leq \{1,2\}$.
 - (b) Partial order, $\sup(\{(x_n), (y_n)\}) = (z_n)$ where $z_i = \max(x_i, y_i) \forall i \in \mathbb{N}$.
 - (c) Partial order, $\sup(\{2,11\})$ does not exist as $22 \notin S$.
 - (d) Total order, $\sup(a, b) = \min(a, b)$.
- 3. POZA AICI.
 - (a) $\inf((1,2),(1,3)) = (1,1).$
 - (b) $\inf((2,3),(3,2)) = (1,6).$
 - (c) $\inf((6,2),(3,3)) = (3,3).$
- 4. Take any x = a + b where $a \in A \land b \in B$. Since $a \le \sup A \land b \le \sup B$ we have $x \le \sup A + \sup B$. Suppose $\exists \varepsilon > 0$ such that $\sup A + \sup B 2\varepsilon \ge x \forall x = a + b$ where $a \in A \land b \in B$. We know $\exists a' \in A \land b' \in B$ such that $a' > \sup A \varepsilon \land b' > \sup B \varepsilon$. But then we have $x' = a' + b' > \sup A + \sup B 2\varepsilon$, contradicting our supposition. Therefore, $\forall y < \sup A + \sup B$ there exists an x = a + b where $a \in A \land b \in B$ such that y < x.

From the previous two paragraphs, we get $\sup A + \sup B$ is $\sup \{a + b | a \in A \land b \in B\}$.

- 5. $S \cup T = (S \setminus T) \cup (T \setminus S) \cup (S \cap T) = (S \oplus T) \cup (S \cap T)$. So $S \cup T = S \oplus T \iff S \cap T = \emptyset$.
- 6. $f(m,n) = \lfloor \frac{10^m 1}{n} \rfloor \lfloor \frac{10^{m-1} 1}{n} \rfloor$.

4-digit positive integers divisible by 6 and 15: $f(4,30) = \lfloor \frac{9999}{30} \rfloor - \lfloor \frac{999}{30} \rfloor = 300$.

4-digit positive integers divisible by 6 or 15: f(4,6) + f(4,15) - f(4,30) = 1500 + 600 - 300 = 1800.

4-digit positive integers divisible by 6 or 10 or 15: f(4,6) + f(4,10) + f(4,15) - f(4,30) - f(4,30) + f(4,30) = 1500 + 900 + 600 - 600 = 2400

- 7. (a) $m \equiv n \pmod{(n-m)}$. Therefore $m^k \equiv n^k \pmod{(n-m)} \forall k \in \mathbb{Z}_+$. So $n-m|n^k-m^k \forall k \in \mathbb{Z}_+$. $f(n) f(m) = \sum_{i=0}^k a_i(n^i m^i)$. Every element of this sum is a multiple of n-m, so the sum is a multiple of n-m.
 - (b) Suppose f(0) = f(3) = 0 and f(n) = 1 for some n. Then $n 0|f(n) f(0) \iff n|1$, so n = 1. But we also have $n 3|f(n) f(3) \iff n 3|1$, so $n 3 = \pm 1$, which contradicts n = 1.
- 8. (a) $C_1 = 1, C_2 = 2, C_3 = 5, C_4 = 14.$
 - (b) Base case: $C_0 = 1 = \frac{1}{0+1} {2 \cdot 0 \choose 0}$. Suppose $C_n = \frac{1}{n+1} {2n \choose n}$. Then $C_{n+1} = \frac{2(2n+1)}{n+2} \frac{1}{n+1} \frac{(2n)!}{n!n!} = \frac{2(n+1)}{n+2} \frac{(2n+1)!}{(n+1)!(n+1)!} = \frac{1}{n+2} \frac{(2n+2)!}{(n+1)!(n+1)!} = \frac{1}{n+2} \frac{(2n+2)!}{(n+2)!} = \frac{1}{n+2} \frac{(2n+2)!}{(n+2)!}$
 - (c) $p|C_n = \frac{1}{n+1} \frac{(2n)!}{n!n!} \implies p|(2n)!$. Suppose $p \ge 2n$. Since 2n is not prime, we have p > 2n. But then no integer between 1 and 2n will be a multiple of p, so $(2n)! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot 2n$ will not be a multiple of p.
 - (d) We have $n^2 > n + 1 \forall n \ge 4$. Base case: $C_4 = 14 > 7$. Suppose $C_n > 2n-1$. Then $C_{n+1} = \frac{2(2n+1)}{n+2}C_n > \frac{2(2n+1)(2n-1)}{n+2} = \frac{2(4n^2-1)}{n+2} > \frac{2n^2+6(n+1)}{n+2} = \frac{2n^2+6(n+1)}{n+2} = \frac{2(2n+1)(2n-1)}{n+2} = \frac{2(2n+1)($
 - (e) Suppose C_n is prime for some $n \geq 4$. From (iii) we get $C_n < 2n$. From (iv) we get $C_n > 2n 1$, contradiction.
 - (f) $C_n = \frac{1}{n+1} \frac{(2n)!}{n!n!} < \frac{1}{n+1} \frac{c(2n)^{2n+\frac{1}{2}} \exp(-2n)}{(bn^{n+\frac{1}{2}} \exp(-n))^2} = \frac{1}{n+1} \frac{c2^{2n+\frac{1}{2}}}{b^2 n^{\frac{1}{2}}} = 4^n \frac{c\sqrt{2}}{b^2} \frac{1}{(n+1)n^{\frac{1}{2}}} = O(4^n n^{-3/2})$